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Using molecular dynamics simulation, we examine the dynamics of sheared polycrystal states in a binary
mixture composed of small and large particles in two dimensions. We vary the composition c of the large
particles and the shear rate �̇ to realize changeovers among crystal, polycrystal, and glass. We find large stress
fluctuations arising from sliding motions of the particles at the grain boundaries, which occur cooperatively to
release the elastic energy stored. These stress fluctuations decrease as the system crosses over from polycrystal
to glass. The dynamic processes are visualized with the aid of a sixfold angle � j�t� representing the
local crystal orientation and a disorder variable Dj�t� representing a deviation from the hexagonal order for
particle j.
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Understanding the deformation mechanisms of polycrys-
tals under applied strain is of great scientific and technologi-
cal importance in materials science �1–4�. If the typical grain
size exceeds a critical size dc�10 nm, the interplay of grain
boundaries and dislocation motions determines the mechani-
cal properties. For very small grain sizes less than dc, some
simulations suggested that plastic deformations are caused
by sliding motions at the grain boundaries. However, these
simulations are still fragmentary. In fact, a number of puzzles
remain in polycrystal rheology, which have not yet been
simulated microscopically, such as the Portevin–Le Chatelier
effect in dilute alloys caused by intermittent yielding �5�. In
physics, on the other hand, the dynamics of sheared glassy
materials has been studied extensively �6,7�, including mi-
croscopic particle systems �8–12�, granular materials
�13,14�, and foams �15–17�, while not enough attention has
been paid to polycrystal rheology.

Recently, using molecular dynamics simulations, we have
examined the dynamics of polycrystal states realized on very
small scales in a model binary mixture in two dimensions
�18�. The parameters we have changed are the size ratio of
the diameters of the two components �2 /�1, the temperature
T, and the composition c. Polycrystal states appear as inter-
mediate states between crystal and glass, where the grain
boundary motions are severely slowed down in the presence
of size dispersity �2 /�1�1. As compared to the particles
within the crystalline regions, those in the grain boundary
regions are relatively mobile, giving rise to dynamic hetero-
geneity on long time scales. Namely, the origin of the dy-
namic heterogeneity is unambiguous in polycrystal states.
We believe that investigating the jamming dynamics over
wide ranges of �2 /�1 and c should help us to understand the
glass dynamics, which still remains elusive, as the highly
frustrated limit. In this paper, we will present simulation re-
sults on polycrystal rheology by changing c and the shear
rate �̇ at fixed �2 /�1=1.4.

Our two-dimensional �2D� system is composed of the
bulk region with volume V=L2 and the top and bottom
boundary regions with volume 0.1 V, as can be seen in Figs.
1 and 2. Shear flow was realized by the relative boundary
motion of the boundaries, where the top and bottom veloci-
ties are ��̇L /2. In the bulk region, 0�x ,y�L, a mixture of

large and small particles interact via a truncated Lenard-
Jones potential of the form v���r�=4������ /r�12− ���� /r�6�
−C��, where � ,�=1,2. It is characterized by the energy �
and the soft-core diameter ���= ���+��� /2 with �2 /�1
=1.4. For r	rcut=3.2�1, we set v���r�=0 and the constant
C�� ensures the continuity of v���r� at the cutoff r=rcut. In
this paper, we change the composition c=N2 / �N1+N2� with
N1+N2=103 in the bulk. The volume V is chosen such that
the volume fraction of the soft-core regions is fixed at 1 or at

= �N1�1

2+N2�2
2� /V=1. For example, L=33.1�1 at c=0.1.

To each boundary �−0.1L�y�0 or L�y�1.1L�, 100 small
particles with radius �1 are attached by the spring potential
10��r−R j�2 /�1

2. They also interact with the other particles in
the boundary and bulk regions with the common Lenard-
Jones potential. Before our simulation, the attached positions
R j �j=1, . . . ,100� in each boundary wall were determined in

γ = 10
−4.

a) γ = 10−3
.

b) γ =10−2
.

c)

FIG. 1. �Color online� Sixfold orientation order �top� and disor-
der variable �bottom� for c=0.02 in a binary mixture with �2 /�1

=1.4. Here �̇=10−4 �left�, 10−3 �middle�, and 10−2 �right�. The large
particles form grain boundaries. Displacement vectors of the par-
ticles in a time interval of 10 �right� are also shown, which are large
for �̇=10−2.
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a liquid state realized at T=2� /kB with the Lenard-Jones po-
tential only.

We integrated the Newton equations using the leapfrog
algorithm �19� under the periodic boundary condition in the
horizontal �y� direction, with the mass ratio being m1 /m2
= ��1 /�2�2. The time step of integration is 0.002� with

� = �1
�m1/� . �1�

We will measure the time t in units of � and the shear rate �̇
in units of �−1. Without shear ��̇=0�, �i� we first equilibrated
the system in a liquid state at T=2� /kB in a time interval of
103 and then quenched it to the final temperature T
=0.2� /kB. �ii� After a relaxation time of 5�103, there was no
appreciable time evolution in various quantities obtained as
an average over the particles �see Fig. 7 of Ref. �18��. �iii�
After these steps, we applied a constant shear to the system.

Since a large fraction of the particles are enclosed by six
particles in 2D dense particle systems, the local crystalline
order is represented by a sixfold orientation �20�. We define
the orientation angle � j in the range �0,
 /3� for each par-
ticle j using the complex number

� j = �
k�bonded

exp�6i� jk� = �� j�e6i�j , �2�

where the summation is over the particles “bonded” to the
particle j. The two particles j�� and k�� are bonded if
their distance �r j −rk� is shorter than R��=1.25��� �9�. The
upper cutoff R�� is slightly longer than the first peak position
of the pair-correlation function g���r�. The � jk is the angle of
the relative vector r j −rk with respect to the x axis. Next we
construct another nonnegative-definite variable representing
the degree of disorder for each particle j by �18�

Dj = 2 �
k�bonded

�1 − cos 6�� j − �k�� . �3�

For a perfect crystal at low T, this quantity arises from the
thermal vibrations and is nearly zero, but for particles around
defects it assumes large values in the range 5–20.

At very small c and without shear, the large particles re-
main much separated in many cases in our simulation. Their
long-distance diffusion is extremely slow at high densities.
However, we can see a tendency for large particles with
small separation to attract each other. If the system size is not
too large, the particles form a single crystal in such quiescent
states, where the defects �mostly created around the large
particles� do not destroy the long-range crystalline order.
However, with application of shear �̇, the large particles eas-
ily aggregate to form a grain boundary on the time scale of
�̇−1. In Fig. 1, we show such examples at c=0.02. The angles
� j and the disorder variable Dj are displayed for �̇=10−4,
10−3, and 10−2. See Ref. �18� for the color map of � j and Fig.
4 below for that of Dj. At the largest shear �̇=10−2, the large
particles become more accumulated close to the boundaries.
On the other hand, in one-component 2D crystals under large
shear, high-density defects appear in slipping layers in shear-
induced melting �21�.

Next, Fig. 2 presents the results at c=0.1. Since the num-
ber of large particles is increased, their alignment along grain
boundaries becomes more apparent, resulting in well-defined
small-scale polycrystal grains. Remarkably, the grain struc-
tures are insensitive to �̇ for not very large shear ��̇�10−3

here�, where the effect of the boundary walls does not extend
into the bulk and the time average of the horizontal velocity
is linear with the gradient being �̇. At this concentration,
grain structures emerge even without shear �18�, which
closely resemble those in �a� and �b�. To support this weak-
ness of the boundary effect, almost the same grain structures
were realized under the �periodic� Lee-Edwards boundary
condition �19� �not shown in this paper�. However, for very
large shear �̇=10−2 in �c�, the velocity gradient becomes lo-
calized near the boundaries, where larger crystalline regions
are continuously rotated and deformed in the middle.

In Fig. 3, the shear stress �xy�t� is displayed in units of
��1

−2 as a function of the average strain �̇t after application of
shear at t=0 for c=0.05, 0.1, and 0.2, which is the sum of the
microscopic shear-stress contributions over all the particles
in the bulk divided by V �7,19�. For c=0.2 the system is in a
glass state. Each curve is a result of a single simulation run.
Strong shear-thinning behavior can be seen in each panel.
However, the results at the largest shear �̇=10−2 are affected
by the boundary effect, as can be inferred from Figs. 1 and 2.
The �xy�t� undergoes large temporal fluctuations, which ob-
viously arise from intermittent plastic deformations of the
grains. The level of fluctuations decreases with increasing c,
because the typical grain sizes decrease with increasing c.
Though the three curves are obtained for very different �̇ in
each panel, they behave similarly if plotted versus the strain
�̇t. This means that the time scale of the intermittent yield is
roughly proportional to �̇−1. See the similar stress-strain
curves calculated in glass in Refs. �11,12�.

In Table I, we show the mean shear stress 	�xy
 and the

γ = 10
−4.

γ = 10−3
.

γ =10−2
.

a) b) c)

FIG. 2. �Color online� Sixfold orientation order �top� and disor-
der variable �bottom� for c=0.1 for three shear rates as in Fig. 1.
The grain structures for �̇=10−4 and 10−3 are similar and are not
affected by the boundaries, while the displacements are localized
near the boundaries for �̇=10−2.
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variance �	���xy�2
, where ��xy�t�=�xy�t�− 	�xy
 is the de-
viation and 	¯
=�t1

t2dt�¯� / �t2− t1� represents the time aver-
age between the two times t1=0.2 / �̇ and t2=0.5 / �̇. Each set
of mean and variance is the result of a single run, so the table

indicates only the trend in the rheology. In the table, these
two quantities decrease with increasing c ��0.2�, while they
do not behave systematically at c=0.3. This should be due to
the fact that the degree of disorder should be maximized
between c=0.2 and 0.3. In polycrystal, we have �eff
= 	�xy
 / �̇� �̇−a with a=0.8–0.9. In glass, similar strong
shear-thinng behavior with a�1 has been observed experi-
mentally �22� and numerically �9�.

In Fig. 4, we display Dj�t� at �a� t=1110, �b� 1120, and �c�
1130 at �̇=10−3, superimposing the displacement vectors
�r j�t�=r j�t+�t�−r j�t� with �t=10. The color is given to
each picture independently, according to its minimum and
maximum of Dj. See also the time evolution of �xy�t� in the
corresponding time intervals, a-b, b-c, and c-d. Between t
=1110 and 1120 �a-b�, as in picture �a�, the deformations are
mostly “elastic” and �xy�t� gradually increases with rela-
tively small fluctuations. However, between t=1120 and
1130 �b-c�, picture �b� demonstrates significant “sliding” par-
ticle motions in the grain boundary regions, which are of
order �1 even for this small �t. These sliding motions are
triggered collectively throughout the system �in our small
system�, leading to a catastrophic drop of �xy�t�. The par-
ticles writtten in orange, which are mostly larger ones, may
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FIG. 3. �Color online� Shear stress �xy�t� vs strain �̇t after ap-
plication of shear for c=0.05 �top�, 0.1 �middle�, and 0.2 �bottom�
in units of ��1

−2, where �̇=10−4, 10−3, and 10−2 exhibiting strong
shear thinning in each panel. Temporal fluctuations are weakened
with increasing c.

TABLE I. Mean shear stress 	�xy
 �top� and square root of the
time average of ��xy�t�− 	�xy
�2 �bottom� in the strain range 0.2
��̇t�0.5 for c=0.05, 0.1, 0.2, and 0.3 �in units of ��1

−2� at shear
rates �̇=10−4 �first line�, 10−3 �second line�, and 10−2 �third line�.

Mean stress c=0.05 c=0.1 c=0.2 c=0.3

�̇=10−4 0.637 0.546 0.356 0.395

�̇=10−3 1.07 0.717 0.548 0.581

�̇=10−2 1.27 0.905 0.761 0.688

Variance c=0.05 c=0.1 c=0.2 c=0.3

�̇=10−4 0.199 0.157 0.135 0.155

�̇=10−3 0.286 0.208 0.140 0.106

�̇=10−2 0.191 0.141 0.099 0.144

b) t=1120a) t=1110

c) t=1130

maxmin

11401120 113011101100 1150

σxy(t)

b

t

FIG. 4. �Color online� Disorder variable Dj at �a� t=1110, �b�
1120, and �c� 1130 at �̇=10−3. The arrows represent the particle
displacement �r j in the subsequent time interval of width 10, which
is large in �b� for the particles in the grain boundary regions. The
shear stress �xy�t� is also shown in this time region, which largely
drops from b to c.
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be regarded as being in disordered configurations. Their
number is of order 10 in �a� and �c�, while it is about 50 in
�b�. Between t=1120 and 1130 �c-d�, picture �c� indicates
that noticeable particle displacements still continue. Large-
scale collective motions within the grains are also conspicu-
ous, which was already noticed in our previous simulation
without shear �18�.

In summary, in polycrystal states with very small grains,
we have found intermittent yielding on a time scale of 0.1�̇−1

for not very large �̇. It is caused by cooperative sliding mo-
tions in the grain boundary regions in agreement with the
atomistic simulations �1–4�. In our small-scale simulation,
however, the yielding occurs coherently over the total system
as in Fig. 4. Hence we cannot determine the spatial scale of
the cooperative sliding extending over grains, which should
be relevant in real systems. Further simulations of plastic
deformations with much larger system sizes are thus infor-
mative. With increasing c ��0.2�, the typical sizes of the
crystalline regions become smaller and the stress fluctuations
gradually decrease, as demonstrated in Figs. 1–3. That is,
weaker disorder results in larger stress fluctuations in plastic

flow. The proportionality of the structural relaxation time to
�̇−1 and the strong shear thinning behavior can be seen in
polycrystal as in glass, as demonstrated in Fig. 3 and Table I.

In highly frustrated glasses, the spatial dimension of each
shear-induced configurational change is limited �8,9,12�,
which should be distinguished from the coherent sliding in
polycrystals. In glasses, such elementary events successively
occur in their neighborhood eventually to form mesoscopic
dynamic heterogeneity �8,9�. Also in the presence of shear,
we should investigate the crossover from polycrystal to glass
�18�, which occurs rather abruptly in a narrow range of c.
Such crossover effects could be investigated in colloidal
mixtures on expanded space-time scales.
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